Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Front Hum Neurosci ; 18: 1349477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646163

RESUMO

Introduction: Physical activity influences psychological well-being. This study aimed to determine the impact of exercise intensity on psychological well-being and alterations in emotion-related brain functional connectivity (FC). Methods: Twenty young, healthy, trained athletes performed a low- and high-intensity interval exercise (LIIE and HIIE) as well as a control condition in a within-subject crossover design. Before and after each condition, Positive And Negative Affect Scale (PANAS) was assessed as well as resting-state functional MRI (rs-fMRI). Voxel-wise FC was examined for bilateral amygdala seed region to whole-brain and emotion-related anatomical regions (e.g., insula, temporal pole, precuneus). Data analyses were performed using linear mixed-effect models with fixed factors condition and time. Results: The PANAS Positive Affect scale showed a significant increase after LIIE and HIIE and a significant reduction in Negative Affect after the control condition. In rs-fMRI, no significant condition-by-time interactions were observed between the amygdala and whole brain. Amygdala-precuneus FC analysis showed an interaction effect, suggesting reduced post-exercise anticorrelation after the control condition, but stable, or even slightly enhanced anticorrelation for the exercise conditions, especially HIIE. Discussion: In conclusion, both LIIE and HIIE had positive effects on mood and concomitant effects on amygdala-precuneus FC, particularly after HIIE. Although no significant correlations were found between amygdala-precuneus FC and PANAS, results should be discussed in the context of affective disorders in whom abnormal amygdala-precuneus FC has been observed.

2.
Sci Rep ; 14(1): 9243, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649395

RESUMO

A crucial step in the clinical adaptation of an AI-based tool is an external, independent validation. The aim of this study was to investigate brain atrophy in patients with confirmed, progressed Huntington's disease using a certified software for automated volumetry and to compare the results with the manual measurement methods used in clinical practice as well as volume calculations of the caudate nuclei based on manual segmentations. Twenty-two patients were included retrospectively, consisting of eleven patients with Huntington's disease and caudate nucleus atrophy and an age- and sex-matched control group. To quantify caudate head atrophy, the frontal horn width to intercaudate distance ratio and the intercaudate distance to inner table width ratio were obtained. The software mdbrain was used for automated volumetry. Manually measured ratios and automatically measured volumes of the groups were compared using two-sample t-tests. Pearson correlation analyses were performed. The relative difference between automatically and manually determined volumes of the caudate nuclei was calculated. Both ratios were significantly different between the groups. The automatically and manually determined volumes of the caudate nuclei showed a high level of agreement with a mean relative discrepancy of - 2.3 ± 5.5%. The Huntington's disease group showed significantly lower volumes in a variety of supratentorial brain structures. The highest degree of atrophy was shown for the caudate nucleus, putamen, and pallidum (all p < .0001). The caudate nucleus volume and the ratios were found to be strongly correlated in both groups. In conclusion, in patients with progressed Huntington's disease, it was shown that the automatically determined caudate nucleus volume correlates strongly with measured ratios commonly used in clinical practice. Both methods allowed clear differentiation between groups in this collective. The software additionally allows radiologists to more objectively assess the involvement of a variety of brain structures that are less accessible to standard semiquantitative methods.

3.
Radiology ; 311(1): e232741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625006

RESUMO

Background Procedural details of mechanical thrombectomy in patients with ischemic stroke are important predictors of clinical outcome and are collected for prospective studies or national stroke registries. To date, these data are collected manually by human readers, a labor-intensive task that is prone to errors. Purpose To evaluate the use of the large language models (LLMs) GPT-4 and GPT-3.5 to extract data from neuroradiology reports on mechanical thrombectomy in patients with ischemic stroke. Materials and Methods This retrospective study included consecutive reports from patients with ischemic stroke who underwent mechanical thrombectomy between November 2022 and September 2023 at institution 1 and between September 2016 and December 2019 at institution 2. A set of 20 reports was used to optimize the prompt, and the ability of the LLMs to extract procedural data from the reports was compared using the McNemar test. Data manually extracted by an interventional neuroradiologist served as the reference standard. Results A total of 100 internal reports from 100 patients (mean age, 74.7 years ± 13.2 [SD]; 53 female) and 30 external reports from 30 patients (mean age, 72.7 years ± 13.5; 18 male) were included. All reports were successfully processed by GPT-4 and GPT-3.5. Of 2800 data entries, 2631 (94.0% [95% CI: 93.0, 94.8]; range per category, 61%-100%) data points were correctly extracted by GPT-4 without the need for further postprocessing. With 1788 of 2800 correct data entries, GPT-3.5 produced fewer correct data entries than did GPT-4 (63.9% [95% CI: 62.0, 65.6]; range per category, 14%-99%; P < .001). For the external reports, GPT-4 extracted 760 of 840 (90.5% [95% CI: 88.3, 92.4]) correct data entries, while GPT-3.5 extracted 539 of 840 (64.2% [95% CI: 60.8, 67.4]; P < .001). Conclusion Compared with GPT-3.5, GPT-4 more frequently extracted correct procedural data from free-text reports on mechanical thrombectomy performed in patients with ischemic stroke. © RSNA, 2024 Supplemental material is available for this article.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Idoso , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Estudos Retrospectivos , Estudos Prospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia
4.
Eur Radiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573340

RESUMO

OBJECTIVES: Hysterosalpingography (HSG) is widely used for evaluating the fallopian tubes; however, controversies regarding the use of water- or oil-based iodine-based contrast media (CM) remain. The aim of this work was (1) to discuss reported pregnancy rates related to the CM type used, (2) to validate the used CM in published literature, (3) to discuss possible complications and side effects of CM in HSG, and (4) to develop guidelines on the use of oil-based CM in HSG. METHODS: A systematic literature search was conducted for original RCT studies or review/meta-analyses on using water-based and oil-based CM in HSG with fertility outcomes and complications. Nine randomized controlled trials (RCTs) and 10 reviews/meta-analyses were analyzed. Grading of the literature was performed based on the Oxford Centre for Evidence-Based Medicine (OCEBM) 2011 classification. RESULTS: An approximately 10% higher pregnancy rate is reported for oil-based CM. Side effects are rare, but oil-based CM have potentially more side effects on the maternal thyroid function and the peritoneum. CONCLUSIONS: 1. HSG with oil-based CM gives approximately 10% higher pregnancy rates. 2. External validity is limited, as in five of nine RCTs, the CM used is no longer on the market. 3. Oil-based CM have potentially more side effects on the maternal thyroid function and on the peritoneum. 4. Guideline: Maternal thyroid function should be tested before HSG with oil-based CM and monitored for 6 months after. CLINICAL RELEVANCE STATEMENT: Oil-based CM is associated with an approximately 10% higher chance of pregnancy compared to water-based CM after HSG. Although side effects are rare, higher iodine concentration and slower clearance of oil-based CM may induce maternal thyroid function disturbance and peritoneal inflammation and granuloma formation. KEY POINTS: • It is unknown which type of contrast medium, oil-based or water-based, is the optimal for HSG. • Oil-based contrast media give a 10% higher chance of pregnancy after HSG, compared to water-based contrast media. • From the safety perspective, oil-based CM can cause thyroid dysfunction and an intra-abdominal inflammatory response in the patient.

5.
Brain Cogn ; 177: 106156, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613926

RESUMO

Acute physical activity influences cognitive performance. However, the relationship between exercise intensity, neural network activity, and cognitive performance remains poorly understood. This study examined the effects of different exercise intensities on resting-state functional connectivity (rsFC) and cognitive performance. Twenty male athletes (27.3 ± 3.6 years) underwent cycling exercises of different intensities (high, low, rest/control) on different days in randomized order. Before and after, subjects performed resting-state functional magnetic resonance imaging and a behavioral Attention Network Test (ANT). Independent component analysis and Linear mixed effects models examined rsFC changes within ten resting-state networks. No significant changes were identified in ANT performance. Resting-state analyses revealed a significant interaction in the Left Frontoparietal Network, driven by a non-significant rsFC increase after low-intensity and a significant rsFC decrease after high-intensity exercise, suggestive of an inverted U-shape relationship between exercise intensity and rsFC. Similar but trend-level rsFC interactions were observed in the Dorsal Attention Network (DAN) and the Cerebellar Basal Ganglia Network. Explorative correlation analysis revealed a significant positive association between rsFC increases in the right superior parietal lobule (part of DAN) and better ANT orienting in the low-intensity condition. Results indicate exercise intensity-dependent subacute rsFC changes in cognition-related networks, but their cognitive-behavioral relevance needs further investigation.

6.
NMR Biomed ; : e5159, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634301

RESUMO

Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.

7.
Neuroradiology ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619571

RESUMO

PURPOSE: To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels. METHODS: One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured. RESULTS: The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times. CONCLUSION: In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.

8.
Epilepsia ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436479

RESUMO

OBJECTIVE: Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS: Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS: Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE: Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.

9.
Commun Biol ; 7(1): 271, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443439

RESUMO

Physical exercise studies are generally underrepresented in young adulthood. Seventeen subjects were randomized into an intervention group (24.2 ± 3.9 years; 3 trainings/week) and 10 subjects into a passive control group (23.7 ± 4.2 years), over a duration of 6 months. Every two months, performance diagnostics, computerized spatial memory tests, and 3 Tesla magnetic resonance imaging were conducted. Here we find that the intervention group, compared to controls, showed increased cardiorespiratory fitness, spatial memory performance and subregional hippocampal volumes over time. Time-by-condition interactions occurred in right cornu ammonis 4 body and (trend only) dentate gyrus, left hippocampal tail and left subiculum. Increases in spatial memory performance correlated with hippocampal body volume changes and, subregionally, with left subicular volume changes. In conclusion, findings support earlier reports of exercise-induced subregional hippocampal volume changes. Such exercise-related plasticity may not only be of interest for young adults with clinical disorders of hippocampal function, but also for sedentary normal cohorts.


Assuntos
Composição Corporal , Memória Espacial , Adulto Jovem , Humanos , Adulto , Cognição , Exercício Físico , Hipocampo/diagnóstico por imagem
10.
J Cancer Res Clin Oncol ; 150(3): 136, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502313

RESUMO

PURPOSE: Patients with spinal metastases (SM) from solid neoplasms typically exhibit progression to an advanced cancer stage. Such metastases can either develop concurrently with an existing cancer diagnosis (termed metachronous SM) or emerge as the initial indication of an undiagnosed malignancy (referred to as synchronous SM). The present study investigates the prognostic implications of synchronous compared to metachronous SM following surgical resection. METHODS: From 2015 to 2020, a total of 211 individuals underwent surgical intervention for SM at our neuro-oncology facility. We conducted a survival analysis starting from the date of the neurosurgical procedure, comparing those diagnosed with synchronous SM against those with metachronous SM. RESULTS: The predominant primary tumor types included lung cancer (23%), prostate cancer (21%), and breast cancer (11.3%). Of the participants, 97 (46%) had synchronous SM, while 114 (54%) had metachronous SM. The median overall survival post-surgery for those with synchronous SM was 13.5 months (95% confidence interval (CI) 6.1-15.8) compared to 13 months (95% CI 7.7-14.2) for those with metachronous SM (p = 0.74). CONCLUSIONS: Our findings suggest that the timing of SM diagnosis (synchronous versus metachronous) does not significantly affect survival outcomes following neurosurgical treatment for SM. These results support the consideration of neurosurgical procedures regardless of the temporal pattern of SM manifestation.


Assuntos
Neoplasias Pulmonares , Neoplasias Primárias Múltiplas , Segunda Neoplasia Primária , Neoplasias da Coluna Vertebral , Masculino , Humanos , Neoplasias da Coluna Vertebral/cirurgia , Neoplasias da Coluna Vertebral/patologia , Prognóstico , Análise de Sobrevida , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Segunda Neoplasia Primária/patologia , Neoplasias Primárias Múltiplas/patologia , Estudos Retrospectivos
11.
Front Neuroimaging ; 3: 1332384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455686

RESUMO

Introduction: Dopaminergic, opiod and endocannabinoid neurotransmission are thought to play an important role in the neurobiology of acute exercise and, in particular, in mediating positive affective responses and reward processes. Recent evidence indicates that changes in fractional amplitude of low-frequency fluctuations (zfALFF) in resting-state functional MRI (rs-fMRI) may reflect changes in specific neurotransmitter systems as tested by means of spatial correlation analyses. Methods: Here, we investigated this relationship at different exercise intensities in twenty young healthy trained athletes performing low-intensity (LIIE), high-intensity (HIIE) interval exercises, and a control condition on three separate days. Positive And Negative Affect Schedule (PANAS) scores and rs-fMRI were acquired before and after each of the three experimental conditions. Respective zfALFF changes were analyzed using repeated measures ANOVAs. We examined the spatial correspondence of changes in zfALFF before and after training with the available neurotransmitter maps across all voxels and additionally, hypothesis-driven, for neurotransmitter maps implicated in the neurobiology of exercise (dopaminergic, opiodic and endocannabinoid) in specific brain networks associated with "reward" and "emotion." Results: Elevated PANAS Positive Affect was observed after LIIE and HIIE but not after the control condition. HIIE compared to the control condition resulted in differential zfALFF decreases in precuneus, temporo-occipital, midcingulate and frontal regions, thalamus, and cerebellum, whereas differential zfALFF increases were identified in hypothalamus, pituitary, and periaqueductal gray. The spatial alteration patterns in zfALFF during HIIE were positively associated with dopaminergic and µ-opioidergic receptor distributions within the 'reward' network. Discussion: These findings provide new insight into the neurobiology of exercise supporting the importance of reward-related neurotransmission at least during high-intensity physical activity.

12.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423052

RESUMO

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Assuntos
Aprendizado Profundo , Glioblastoma , Humanos , Inteligência Artificial , Biomarcadores , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
13.
Hum Brain Mapp ; 45(3): e26585, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401135

RESUMO

Temporal discounting, the tendency to devalue future rewards as a function of delay until receipt, is influenced by time framing. Specifically, discount rates are shallower when the time at which the reward is received is presented as a date (date condition; e.g., June 8, 2023) rather than in delay units (delay condition; e.g., 30 days), which is commonly referred to as the date/delay effect. However, the cognitive and neural mechanisms of this effect are not well understood. Here, we examined the date/delay effect by analysing combined fMRI and eye-tracking data of N = 31 participants completing a temporal discounting task in both a delay and a date condition. The results confirmed the date/delay effect and revealed that the date condition led to higher fixation durations on time attributes and to higher activity in precuneus/PCC and angular gyrus, that is, areas previously associated with episodic thinking. Additionally, participants made more comparative eye movements in the date compared to the delay condition. A lower date/delay effect was associated with higher prefrontal activity in the date > delay contrast, suggesting that higher control or arithmetic operations may reduce the date/delay effect. Our findings are in line with hypotheses positing that the date condition is associated with differential time estimation and the use of more comparative as opposed to integrative choice strategies. Specifically, higher activity in memory-related brain areas suggests that the date condition leads to higher perceived proximity of delayed rewards, while higher frontal activity (middle/superior frontal gyrus, posterior medial frontal cortex, cingulate) in participants with a lower date/delay effect suggests that the effect is particularly pronounced in participants avoiding complex arithmetic operations in the date condition.


Assuntos
Comportamento de Escolha , Desvalorização pelo Atraso , Humanos , Imageamento por Ressonância Magnética , Tecnologia de Rastreamento Ocular , Recompensa
15.
MAGMA ; 37(1): 15-25, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37702845

RESUMO

Among the 28 reporting and data systems (RADS) available in the literature, we identified 15 RADS that can be used in Magnetic Resonance Imaging (MRI). Performing examinations without using gadolinium-based contrast agents (GBCA) has benefits, but GBCA administration is often required to achieve an early and accurate diagnosis. The aim of the present review is to summarize the current role of GBCA in MRI RADS. This overview suggests that GBCA are today required in most of the current RADS and are expected to be used in most MRIs performed in patients with cancer. Dynamic contrast enhancement is required for correct scores calculation in PI-RADS and VI-RADS, although scientific evidence may lead in the future to avoid the GBCA administration in these two RADS. In Bone-RADS, contrast enhancement can be required to classify an aggressive lesion. In RADS scoring on whole body-MRI datasets (MET-RADS-P, MY-RADS and ONCO-RADS), in NS-RADS and in Node-RADS, GBCA administration is optional thanks to the intrinsic high contrast resolution of MRI. Future studies are needed to evaluate the impact of the high T1 relaxivity GBCA on the assignment of RADS scores.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Gadolínio , Sistemas de Dados , Estudos Retrospectivos
16.
Eur Radiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060004

RESUMO

The Contrast Media Safety Committee of the European Society of Urogenital Radiology has, together with the Preanalytical Phase Working Group of the EFLM Science Committee, reviewed the literature and updated its recommendations to increase awareness and provide insight into these interferences. CLINICAL RELEVANCE STATEMENT: Contrast Media may interfere with clinical laboratory tests. Awareness of potential interference may prevent unwanted misdiagnosis. KEY POINTS: • Contrast Media may interfere with clinical laboratory tests; therefore awareness of potential interference may prevent unwanted misdiagnosis. • Clinical Laboratory tests should be performed prior to radiological imaging with contrast media or alternatively, blood or urine collection should be delayed, depending on kidney function.

17.
Brain Commun ; 5(6): fcad324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075946

RESUMO

Rasmussen's encephalitis is characterized by drug-resistant focal seizures and chronic inflammation of one hemisphere leading to progressive loss of hemispheric volume. In this cohort study, we aimed to investigate subcortical grey matter volumes and asymmetries in Rasmussen's encephalitis longitudinally in clinically relevant subgroups. We retrospectively included all T1-weighted MRI scans of all people with Rasmussen's encephalitis who were treated at the University Hospital Bonn between 1995 and 2022 (n = 56, 345 scans, median onset 8 years, 36 female). All cases were classified as type 1 (onset ≤ 6 years) or type 2 (onset > 6 years). Subcortical segmentations were performed using FreeSurfer. Longitudinal trajectories of subcortical volumes and hemispheric ratios (ipsi-/contralesional) were assessed using linear mixed-effect models. Unihemispheric cortical degeneration was accompanied by ipsilesional atrophy of the nucleus accumbens, caudate nucleus, putamen, thalamus and contralesional atrophy of the nucleus accumbens and caudate nucleus both in type 1 (all P ≤ 0.014) and type 2 (all P < 0.001). In type 1, however, contralesional volume increase of the amygdala, hippocampus, pallidum and thalamus was found (all P ≤ 0.013). Both ipsilesional and contralesional subcortical atrophies, like cortical atrophy, are most probably caused by neurodegeneration following chronic neuroinflammation. We speculate that contralesional volume increase in type 1 could be related to either neuroplasticity or ongoing acute neuroinflammation, which needs to be investigated in further studies.

18.
Brain Commun ; 5(6): fcad271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946794

RESUMO

Essential tremor and Parkinson's disease patients may present with various tremor types. Overlapping tremor features can be challenging to diagnosis and misdiagnosis is common. Although underlying neurodegenerative mechanisms are suggested, neuroimaging studies arrived at controversial results and often the different tremor types were not considered. We investigated whether different tremor types displayed distinct structural brain features. Structural MRI of 61 patients with essential tremor and 29 with tremor-dominant Parkinson's disease was analysed using a fully automated artificial-intelligence-based brain volumetry to compare volumes of several cortical and subcortical regions. Furthermore, essential tremor subgroups with and without rest tremor or more pronounced postural and kinetic tremor were investigated. Deviations from an internal reference collective of age- and sex-adjusted healthy controls and volumetric differences between groups were examined; regression analysis was used to determine the contribution of disease-related factors on volumetric measurements. Compared with healthy controls, essential tremor and tremor-dominant Parkinson's disease patients displayed deviations in the occipital lobes, hippocampus, putamen, pallidum and mesencephalon while essential tremor patients exhibited decreased volumes within the nucleus caudatus and thalamus. Analysis of covariance revealed similar volumetric patterns in both diseases. Essential tremor patients without rest tremor showed a significant atrophy within the thalamus compared to tremor-dominant Parkinson's disease and atrophy of the mesencephalon and putamen were found in both subgroups compared to essential tremor with rest tremor. Disease-related factors contribute to volumes of occipital lobes in both diseases and to volumes of temporal lobes in essential tremor and the putamen in Parkinson's disease. Fully automated artificial-intelligence-based volumetry provides a fast and rater-independent method to investigate brain volumes in different neurological disorders and allows comparisons with an internal reference collective. Our results indicate that essential tremor and tremor-dominant Parkinson's disease share structural changes, indicative of neurodegenerative mechanisms, particularly of the basal-ganglia-thalamocortical circuitry. A discriminating, possibly disease-specific involvement of the thalamus was found in essential tremor patients without rest tremor and the mesencephalon and putamen in tremor-dominant Parkinson's disease and essential tremor without rest tremor.

19.
Brain Commun ; 5(6): fcad290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953836

RESUMO

Rasmussen's encephalitis is an immune-mediated brain disorder characterised by progressive unilateral cerebral atrophy, neuroinflammation, drug-resistant seizures and cognitive decline. However, volumetric changes and epileptiform EEG activity were also observed in the contralateral hemisphere, raising questions about the aetiology of contralateral involvement. In this study, we aim to investigate alterations of white matter integrity, structural network topology and network efficiency in Rasmussen's encephalitis using diffusion-tensor imaging. Fourteen individuals with Rasmussen's encephalitis (11 female, median onset 6 years, range 4-22, median disease duration at MRI 5 years, range 0-42) and 20 healthy control subjects were included. All subjects underwent T1-weighted structural and diffusion-tensor imaging. Diffusion-tensor images were analysed using the fixel-based analysis framework included in the MRtrix3 toolbox. Fibre density and cross-section served as a quantitative measure for microstructural white matter integrity. T1-weighted structural images were processed using FreeSurfer, subcortical segmentations and cortical parcellations using the Desikan-Killiany atlas served as nodes in a structural network model, edge weights were determined based on streamline count between pairs of nodes and compared using network-based statistics. Global efficiency was used to quantify network integration on an intrahemispheric level. All metrics were compared cross-sectionally between individuals with Rasmussen's encephalitis and healthy control subjects using sex and age as regressors and within the Rasmussen's encephalitis group using linear regression including age at onset and disease duration as independent variables. Relative to healthy control subjects, individuals with Rasmussen's encephalitis showed significantly (family-wise-error-corrected P < 0.05) lower fibre density and cross-section as well as edge weights in intrahemispheric connections within the ipsilesional hemisphere and in interhemispheric connections. Lower edge weights were noted in the contralesional hemisphere and in interhemispheric connections, with the latter being mainly affected within the first 2 years after disease onset. With longer disease duration, fibre density and cross-section significantly (uncorrected P < 0.01) decreased in both hemispheres. In the contralesional corticospinal tract, fibre density and cross-section significantly (uncorrected P < 0.01) increased with disease duration. Intrahemispheric edge weights (uncorrected P < 0.01) and global efficiency significantly increased with disease duration in both hemispheres (ipsilesional r = 0.74, P = 0.001; contralesional r = 0.67, P = 0.012). Early disease onset was significantly (uncorrected P < 0.01) negatively correlated with lower fibre density and cross-section bilaterally. Our results show that the disease process of Rasmussen's encephalitis is not limited to the cortex of the lesioned hemisphere but should be regarded as a network disease affecting white matter across the entire brain and causing degenerative as well as compensatory changes on a network level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...